
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

File Handle Leak

QI’m using the code below to
make a new file when I need

it. The problem is that after the
program has been running a while,
I get an EInOutError exception say-
ing there are too many open files. I
seem to be losing file handles
somewhere.

var F :TextFile;
try
 if not FileExists(FileName)
 then FileCreate(FileName);
 AssignFile(F, FileName);
 Rewrite(F);
 CloseFile(F);
except
 { Handle problem }
end;

AThe core problem is your
call to FileCreate. This does

create a new file, but also opens it
and returns the file handle. Since
you not storing this handle, the file
remains open and each call to this
code uses another handle. How-
ever, the call to FileCreate is not
required anyway. Your call to
Rewrite will accommodate
FileCreate’s purpose.

You possibly have a misunder-
standing of how file handles work.
If a file handle is returned for a file,
it is not the only file handle for that
file. Another file routine can open
the same file and that will yield a
second file handle. Each one will
take up space in your program’s
file handle table, and each one will
individually need to be closed.

Validation En Masse

QI have approximately sev-
enty TDBEdit controls all of

which are only allowed values of 0,
1 or 2. I wish to check each value

when it has been entered and so I
tried using the edit’s OnExit event.
I have been unsuccessful since
from within the OnExit handler I
can’t identify the control that I
have just left.

AThere are two possibilities
that come to mind. Your

OnExit handler can identify the
control of interest by looking at its
Sender parameter. This TObject
parameter is in fact the control that
just lost the focus. The OnExit
routine, shared amongst all the
TDBEdit controls, could be like
Listing 1.

An alternative (and maybe bet-
ter) idea would be to get the field
objects to validate themselves
rather than the data-aware user in-
terface elements. You can make an
OnValidate event handler for each
of the field objects (use the Fields
Editor for the table or query to
make these); again, make a shared
one if it is appropriate. In the
OnValidate event, check the con-
tents of the field (it is passed as a

parameter to the event) and if it is
bad, raise an exception. See Listing
2. [See Bob Swart’s article on page
29 for more on validation. Editor]

Enum As String

QGiven a value as an enumer-
ated type, is there any way of

turning it into a string?

ANormally in a compiled
language the answer is no.

But we do have run-time type
information (RTTI) in Delphi and
there are a number of subroutines
in the TypInfo unit which know how
to access it, the important one for
this question being GetEnumName.
This unit is not documented, but
can be very useful: its interface can
be found in TYPINFO.INT in the
\DELPHI\DOC directory. We can
cause RTTI to be generated for any
given type by passing the type to
the special TypeInfo function.
Given the enumerated type
TFormBorderStyle, used for a form’s
BorderStyle property and defined:

procedure TForm1.DBEdit1Exit(Sender: TObject);
var Value: String;
begin
 if Sender is TDBEdit then
 if TDBEdit(Sender).Field <> nil then begin
 Value := TDBEdit(Sender).Field.AsString;
 if (Length(Value) <> 1) or not (Value[1] in [’0’.. ’2’]) then begin
 ActiveControl := TWinControl(Sender);
 raise EDatabaseError.Create(’Value must be 0, 1 or 2’);
 end;
 end;
end;

➤ Listing 1

procedure TForm1.Table1SpeciesNoValidate(Sender: TField);
var Value: String;
begin
 Value := Sender.AsString;
 if (Length(Value) <> 1) or not (Value[1] in [’0’..’2’]) then
 raise EDatabaseError.Create(’Value must be 0, 1 or 2’);
end;

➤ Listing 2

56 The Delphi Magazine Issue 13

TFormBorderStyle =
 (bsNone, bsSingle,
 bsSizeable, bsDialog);

we can say:

uses TypInfo;
Caption := GetEnumName(
 TypeInfo(TFormBorderStyle),
 Ord(BorderStyle))^;
BorderStyle :=
 TFormBorderStyle(
 GetEnumValue(TypeInfo(
 TFormBorderStyle),
 ’bsSingle’));

In Delphi 2 you do not use the ^
symbol in the first line. This idea
was first presented by Michael Ax
in the Tips & Tricks section of Issue
6, and again in Issue 9 by Stephen
Posey.

CPU Level Debugging

QIs there any way of seeing the
assembler instructions gen-

erated by the Delphi 2 compiler
without resorting to the cumber-
some Turbo Debugger?

AThere seems to be a consen-
sus of opinion that Turbo

Debugger is a tricky beast to tame:
unfounded in my opinion. Turbo
Debugger does the same stuff as
Delphi’s debugger, just with some-
times differing keystrokes to
Delphi’s default. But in any case, it
has come to my attention that
there is an undocumented registry
entry that controls an assembler
view of your Delphi program. It is
quite rudimentary but shows the
instructions and allows you to step
through the program at a machine
instruction level. Using the
Windows 95 Registry Editor, navi-
gate through HKEY_CURRENT_USER,
Software, Borland, Delphi, 2.0,
Debugging. Ensuring Debugging is
the selected section, choose Edit |
New | String value. Type in the
name EnableCPU and press Enter to
confirm it. Now choose Edit |
Modify and type in a value of 1. Next
time you launch Delphi 2, choose
the new item View | CPU. It will
appear more useful if you run a
program and stop it at a
breakpoint.

If memory serves correctly, the
NT 3.5 Registry Editor is a little less
friendly than that in Windows 95. If
you are running on NT, put the
snippet from Listing 3 in a program
and add Registry to an appropriate
uses clause.

Stop Splashing About

QSince Delphi 2 is 32-bit, I am
able to continue working in

other applications whilst it is load-
ing. However, the splash screen
that shows during the load-up
process gets in the way. Is there
some way to turn it off?

AIndeed. Modify your Delphi 2
shortcut to pass a /NS

command-line switch and your
wish is granted.

Form-wide OnMouseMove

QWhen you make an On-
MouseMove event handler for a

form, it only fires when the mouse
moves over the form, not when
over any controls on the form. Can
I make it fire for the entirety of the
form, including all controls and still

get form-relative X/Y co-ordinates
passed in?

ALet’s say your form’s
OnMouseMove handler looks

like GenericMouseMove in Listing 4,
which writes the mouse coordi-
nates on the caption bar as well as
which quarter the mouse is in. To
make it work across the form, you
can go round all your controls and
share the event handler by select-
ing the OnMouseMove event, dropping
down the list of available handlers
and choosing GenericMouseMove.
This event handler sharing could
also be achieved using a text ver-
sion of the form. Delphi 2 users can
get this by right-clicking on the
form and choosing View as text,
but Delphi 1 users will need to
choose File | Open file, change
the List files of type to show
DFM files, and open the appropri-
ate one. Locate the OnMouseMove
event property for the form, and
then copy it into all the other ob-
jects on the form. A third alterna-
tive which is probably easier is to
use the code from Listing 5 in your
form’s OnCreate handle to automate
the process.

with TRegIniFile.Create(’Software\Borland\Delphi\2.0’) do
 try
 WriteString(’Debugging’, ’EnableCPU’, ’1’)
 finally
 Free
 end

➤ Listing 3

procedure TForm1.GenericMouseMove(
 Sender: TObject; Shift: TShiftState; X, Y: Integer);
type
 TBoolStrings = array[Boolean] of String;
const
 Vert: TBoolStrings = (’Bottom’, ’Top’);
 Horz: TBoolStrings = (’right’, ’left’);
begin
 Caption := Format(’%s %s (%d,%d)’, [Vert[Y < ClientHeight div 2],
 Horz[X < ClientWidth div 2], X, Y]);
end;

➤ Listing 4

procedure TForm1.FormCreate(Sender: TObject);
var Loop: Integer;
begin
 for Loop := 0 to ComponentCount - 1 do
 if Components[Loop] is TControl then
 TButton(Components[Loop]).OnMouseMove := GenericMouseMove
end;

➤ Listing 5

58 The Delphi Magazine Issue 13

One of these approaches has
now shared the event handler
between all the controls but the
coordinates are control-relative.
The OnMouseMove event handler
needs some modification to give
form-relative controls all the time,
as shown in Listing 6. The project
MOVE.DPR on the disk shows this.

Default
OLE Automation Property

QIn products other than
Delphi, such as VB, you can

access an OLE automation server’s
default property by not specifying
a property at all. How do you set up
such a property in a Delphi 2 serv-
er, and can you then reference it
from a Delphi 2 written controller?
The same question applies to the
Evaluate method. A statement that
would normally be

X.Evaluate(“A1:C1").Value = 10

can be abbreviated to

X.[A1:C1].Value = 10

if an Evaluate method has been set
up. How do we set this up in Delphi,
and does Delphi support the same
abbreviation?

AThe default OLE server
property is one with a

dispatch id of DispId_Value (0).
You can specify your automated
property dispatch ids using the
little used dispid directive as
shown in the example automation
object in Listing 7.

Delphi controller code could
access this property either in the
normal way by specifying it’s
name, or without as shown in
Listing 8. Notice that it seems
sensible to use a typecast to
change the returned TDateTime into
a string, but since Server is a vari-
ant it is not strictly necessary. The
first two lines use the typecast, but
the second pair of lines are quite
successful even without it.

Delphi doesn’t support the
shorthand form of the Evaluate
routine, but you should be able to
set up such a routine using a dispid
of DispId_Evaluate (-5).

Inheritance Addendum
Last month’s discussion of
virtual, dynamic and override
made use of the inherited key-
word. Normally, in any method,
you can use inherited to specify
you are referring to a method or
property from the ancestor class
(extensively used in conjunction
with polymorphism) as below:

procedure TDerived.AMethod(
 Value1, Value2: Integer);
begin
 inherited AMethod(
 Value1, Value2)
end;

When writing Window message
handlers, it is quite well docu-
mented that you can get the inher-
ited functionality to be called by
using the inherited word on its
own (to avoid problems due to the
ancestor method possibly not
existing, or having a different name
or parameter type). Delphi 2 intro-
duced form inheritance. In an

inherited form’s event handlers,
the original event handler from the
ancestor form is called by also us-
ing just the word inherited (try it
and check). This is possible in Del-
phi 2 due to a combination of two
things. Firstly, Borland have pleas-
antly, but quietly, added general
support for calling an ancestor pro-
cedure with inherited alone (func-
tions and property references still
need full syntax). Secondly, event
handlers are all procedures.

The code below is slightly
shorter than the previous snippet,
but in Delphi 2 it will be equally
valid:

procedure TDerived.AMethod(
 Value1, Value2: Integer);
begin
 inherited
end;

Acknowledgements
Thanks to Roy Nelson for various
contributions to this month’s
answers.

TServer = class(TAutoObject)
private
 function GetCurrentTime: TDateTime;
automated
 property CurrentTime: TDateTime read GetCurrentTime dispid DispId_Value;
end;

➤ Listing 7

var Server: Variant;
...
Server := CreateOLEObject(’MyOLE.Server’);
...
Caption := TimeToStr(Server.CurrentTime);
Caption := TimeToStr(Server);
Caption := Server.CurrentTime;
Caption := Server;

➤ Listing 8

procedure TForm1.GenericMouseMove(
 Sender: TObject; Shift: TShiftState; X, Y: Integer);
type
 TBoolStrings = array[Boolean] of String;
const
 Vert: TBoolStrings = (’Bottom’, ’Top’);
 Horz: TBoolStrings = (’right’, ’left’);
var
 Pt: TPoint;
begin
 Pt := Point(X, Y);
 Pt := Form1.ScreenToClient((Sender as TControl).ClientToScreen(Pt));
 with Pt do
 Caption := Format(’%s %s (%d,%d)’, [Vert[Y < ClientHeight div 2],
 Horz[X < ClientWidth div 2], X, Y]);
end;

➤ Listing 6

60 The Delphi Magazine Issue 13

	File Handle Leak
	Validation En Masse
	Enum As String
	CPU Level Debugging
	Stop Splashing About
	Form-wide OnMouseMove
	Default OLE Automation Property
	Inheritance Addendum
	Acknowledgements

